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Abstract. The general scattering problem of vector electromagnetic waves from a 
stochastic medium containing particles with random size, orientation and position 
distributions is formulated and solved in terms of a generalised dyadic average scattering 
amplitude. The independence approximation used in the solution is verified by consider- 
ing the results of an exact solution to the scattering from two spheres as a function of their 
displacement. The specific case of a rain-filled medium and propagation in the centimetre 
and millimetre wave regions is considered. The general theory is applied in  order to derive 
a more generalised form of the Van de Hulst propagation equation for the coherent field 
in such a medium. Conditions are then formulated for multiple scattering to be negligible 
and numerical examples presented covering the frequency range up to 100 GHz which 
show that indeed the effects of multiple scattering are negligible for the raindrop medium. 

1. Introduction 

Many electromagnetic wave propagation problems can be modelled by the scattering 
from an ensemble of particles. Often the scattering from one discrete particle in 
isolation is soluble but the multiple scattering from the assemblage is very complicated 
and can be solved exactly only for special cases. A prerequisite to any solution is the 
physical and geometrical description of the scattering system. In order to reduce the 
complexity of some propagation problems the state of the system is taken to be 
deterministic. However, in this work we shall primarily be concerned with the average 
field and hence coherent scattering from precipitation particles in the troposphere and 
the statistical nature of their description leads us to formulate the problem in terms of 
a stochastic model. 

The multiple scattering of waves is encountered in many fields and has been the 
subject of research for many years. Most of the solutions developed are based on the 
ideas originated by Foldy (1945) and Lax (1951, 1952) and a good survey of the 
research prior to 1960 is given by Twersky (1960). For deterministically distributed 
scatterers the problem has been investigated by Twersky (1962a, 1967). Although the 
deterministic model can be considered as a special case for the precipitation 
environment, a more general stochastic model is considered essential for meaningful 
results to be obtained. For the stochastic model the approach and method of solution 
is different from the deterministic case in which many simplifications can often be 
made. For a system of randomly distributed scatterers the multiple scattering problem 
has been investigated by Waterman and Yeh (1961) for scalar waves, and Twersky 
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(196213, c) has formulated the problem by using two different approximation tech- 
niques. Mathur and Yeh (1964) have used a similar approach to tackle the more 
complex vector electromagnetic wave case for spherical scatterers. In all of these 
cases in order to obtain analytic results approximations must be made. In general 
little attention is paid to the validity of these approximations although Fikioris and 
Waterman (1964) do consider this problem, A new approach to the problem has been 
the use of the Monte-Carlo method (Olsen et a1 1976) but this is very expensive in 
terms of computer power. 

For propagation in rainfall it is usually assumed that multiple scattering effects are 
negligible (Oguchi 1973). However, the validity of this assumption has received only 
scant attention in the literature (Ishimara and Lin 1973) for the frequency range 
1-100 GHz in which rain/electromagnetic wave interaction is most prominent. In this 
paper we present a more generalised version of Twersky’s theory for vector elec- 
tromagnetic waves and a stochastic scatterer model which includes random size, 
orientation and position distributions. The results of an exact solution for multiple 
scattering between two spheres are presented to justify the main theory and results are 
presented for the raindrop case which include conditions for multiple scattering to be 
negligible. 

2. General formulation of the multiple scattering problem 

2.1. A stochastic model for the multiple scattering medium 

Let us define each scatterer by the following parameters: 

ri :  

hi: 
ai :  

the position of the scatterer given as a position vector of a characteristic point 
of the ith scatterer 
the orientation vector of the ith scatterer 
an equivolumetric spherical radius defining the size of the scatterer. 

In addition the shape of the scatterer should be specified. For the raindrop case the 
shape is spheroidal and the general description given here is appropriate. Let the 
number of scatterers forming the ensemble be N >> 1; then in order to obtain a 
stochastic description of the system we must find a composite probability distribution 

In order to simplify the analysis we will assume all of the stochastic variables to be 
statistically independent, i.e. 

where p(ri) ,  p ( & )  and p(ai) are the probability distributions of the random variable’s 
position, orientation and size. In addition we assume that there is no interactive force 
between the particles such that the position of the particles is a uniform distribution in 
three-dimensional space. Accordingly, 
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where p is the number of particles per unit volume. The scatterers are confined inside 
a slab of thickness d and the complete geometry is shown in figure 1. Let us now 
investigate the electromagnetic problem. 

Figure 1. Multiple scattering geometry 

For an incident wavevector ki the 'dyadic electric field E(r)' will satisfy an integral 
equation of the form 

where &(r) = (3- bi&) eiki'r is the incident dyadic field, i.e. @o(r).  e*i = e*i eiki"; e*i being 
a unit incident field polarisation vector. The dyadic Green function is given: 

ko = /ki/ and n is the refractive index of the scatterers (in this case we asstme that all 
scatterers have the same refractive index), r: is the integration variable which is taken 
with respect to the origin r, of the sth scatterer (i.e. the local coordinate system of the 
sth particle) and 'n is the unit dyadic. 

2.2. The average scattered field (b(r)) 
The ensemble average of the random scattered field is given by 

(b ( r ) )=  p(rl, 41, a i ; .  . . ; &N, UN)b(r)drl d&l d u i . .  . drN d&N daN 

where Os means that the ensemble average is taken by keeping the sth scatterer 
constant in position, size and orientation. Substituting equation (3) into (6) and 
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assuming &,, a, have the same statistics for all particles 

A translation of the sth scatterer parallel to x ,  y plane so that its centre r, falls on the z 
axis at a point zs, according to equation (4) involves a phase change of 

(&(r, + ,;I), = e ikOX*sina  (&z, + r;)) , .  (8) 

By using the complex wave representation for the Green function, namely; 
w-im 

eikolr-r'l iko 
-=- ['dp 1 
lr-r'l 27r 

sin [ d[ exp [iko{(z -2'1 cos 5 

+sin [ [ ( x  - x ' )  cos p + ( y  - y') sin PI)] (9) 

together with equations (7) and (8) and performing the integrations we obtain, 

x exp{iko[lz - zs - z 1 I cos a + ( x  - x : )  sin a I) . (E(r,  + d)) ,  (10) 

where a is defined as the angle between the z axis and i i (  = (sin a, 0, cos a)). For a 
point r inside the scattering medium we can write (10) as 

d 

(11) 
(b ( r ) )  = -( 2.rriP eiki.r dz,(#(kilz,)) e-i"z*+eiki'r I, dz, (#(kliz,)) eiyzi) 

Y 

where y = ko cos a ; kl = ko(sin a, 0, -cos a) and 

<E(z, + dNS e-iko(x;sina+z:wso) 

the latter being a 'generalised scattering amplitude'. 
Now defining E+(O, z ) ,  e-(,, d )  as 

we can write the average field as follows 

(E(r ) )  = (&+(O, z)+&-(z, d ) )  eikoxsinn. 

2.3. Evaluation of the average scattered field 

Equation (11) describes the average value of the scattered field in terms of an 
unknown generalised scattering amplitude which in turn is related to the unknown 
average scattered field ( e ( z ,  + ri))s. 
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By using the conditional probability rule we can write 

(&(z, +r:)) ,  = &(z, + r i )+  dr‘: p(lr: - r’:l). (E(z ,  + r’:))s 6. 

where the conditional probability is given as 

P h/ rs ) = p (rA = P / N  (17) 

and ( )A,s indicates that the ensemble average is taken keeping the A and sth scatterer’s 
random variables fixed. The recursive procedure in (16) can be applied successively, 
increasing the number of fixed scatterers. In order to achieve a solution this chain 
process should be broken at some stage. In order to accomplish this it is necessary to 
assume that the scatterer system is such that we can impose the approximation 

(E(r, +r:DS.A =(&, +r:)),.  (18) 

This implies that the average value of the field inside the sth scatterer is unaffected 
by a change of state of the hth scatterer. The validity of this approximation is 
considered in the next subsection. 

Substituting equations (17), (18) into (16) and assuming that N >> 1 we obtain 

Now it has already been shown that (&(z,+rl)) ,  given by equation (15), consists of 
the superposition of two plane waves. Equation (19) states that the average field 
@(z, +r:))S, keeping the sth scatterer fixed, is the solution of the scattering problem 
when the incident wave is given by equation (15). 

It should be noticed that the generalised scattering amplitude defined in equation 
(12) corresponds to this scattering process. Accordingly we can now write the 
generalised scattering amplitude as the superposition of the individual scattering 
amplitudes multiplied by the appropriate exciting fields, namely: 

(R(krlZ))= I p(Z)p(u) da  dai(f(ktIki9 a*, a ) .  E+(& z)+f(ktIkl, ai, a )  8-b d ) )  (20) 

where k, is the wavevector in the observation direction and f(ktlki, 8, a )  is the 
individual dyadic scattering amplitude €or a scatterer with orientation di and size a. 

Defining , 



772 N K Uzunoglu and B G Evans 

Substituting the values of (P(k, lz))  into equations (13), (14) and differentiating twice 
we have 

where c = 2.rrip/ y. 
Equation (23) describes the propagation inside the multiple scattering medium, 

assuming that we know the individual scattering amplitudes of the scatterers therein. 

2.4. Validity of the independence approximation 

The independence approximation given in equation (18) is the basis for the solution of 
the ensemble scattering problem given in the previous subsection. Equation (18) 
states that averaging over all possible values for (N - 2) scatterers the field inside the 
sth scatterer is not affected by the state of the A th scatterer. The latter will certainly 
be true if multiple scattering between S and A is weak. To investigate the latter even 
for the raindrop situation over a reasonable size and frequency range is very difficult. 
We have taken the simplest model of two neighbouring spheres with the complex 
refractive index of water and investigated scattering of scalar waves from them. This 
precise problem has not previously been evaluated although the scattering of a plane 
electromagnetic wave by two spherical particles has received considerable attention in 
the the literature (e.g. see Twersky 1967). We have used an extension of the method 
of multipole expansion to obtain an exact solution for the scattered fields from the 
spheres making use of the translational addition theorem for vector spherical wave- 
functions. The detailed mathematical derivation is not included herein but is to be 
found in Uzunoglu (1976). In order to demonstrate the validity of equation (18) and 
to show the effect of multiple scattering, two specific cases have been evaluated, one in 
the millimetre wave range and the other for optical frequencies. In both cases besides 
the exact total scattering amplitude two approximations have been evaluated. The 
first is the independent scattering amplitude which assumes that the individual scat- 
tering amplitudes sum up in the forward direction and the second an intermediate 
approximation which assumes a far-field influence of one scatterer on its neighbour. 
The two specific results are shown in figure 2 where the extinction and scattering cross 
section respectively are shown for the three cases as a function of the displacement b 
between equal sphere centres. 

Figure 2(a) shows a large refractive index case (77 = 5 . 8  + 2*l i ,  koal = koa2 = 0.4) 
with endfire incidence. This corresponds to a medium size raindrop at millimetre 
wave frequencies. For the forward scattering amplitude, the difference in the extinc- 
tion cross section given by the two approximations and the exact solution is less than 
15% even for small values of kob. As kob increases the total extinction cross section 
of the exact and approximate solution converge to the same values. The exact 
solution is seen to oscillate with period 2kob/.rr. 

A second example is shown in figure 2(b) for a pure-real refractive index 77 = 
1-333, k0ul=koai=2.0.  This corresponds to a small size raindrop at optical 
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Figare 2. ( a )  Extinction cross section dependence for two spherical scatterers, no= 
5.8+i2.1, koal = koa2 = 0.4. (6) Scattering cross section dependence for two spherical 
scatterers, no= 1.33333, koa1 = koa2 = 2.0. For both ( a )  and (b), -, exact solution; 

, independent scatterer approximation; - - - -, far-field approximation. 

frequencies. Multiple scattering phenomena are seen to be strong for small values of 
kob and the far-field approximation breaks down and cannot be used as a basis for 
evaluation. Although both of the approximations converge to the independent scat- 
terer cross section the rate of convergence is much slower than in figure 2 ( a ) .  The 
essential condition for multiple scattering to be negligible is that kob >> 1. For a given 
koa there is for the raindrop case a value of kob >> 1 for which the independence 
approximation is valid. 

The two neighbouring spheres problem has been solved for scalar waves but as the 
basic equations are similar in the electromagnetic case the same qualitative 
conclusions regarding the validity of the independence relationship apply to both. 

3. Propagation of centimetre and millimetre waves through a region containing 
spheroidal raindrops 

3.1. A description of the propagation medium 

In order to solve for propagation through a stochastic medium we need to use the 
general equations (23) and (24). However, before doing this let us make some 
simplifying assumptions. Firstly, let the orientation of scatterers be peaked around 
&o. (There is some experimental evidence to justify this.) That is: 
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and 

(.f(krIki))= cm p(a)  daf(ktlki, 60, a )  

where the raindrop size distribution p(a)  da  has been investigated by many authors in 
the literature, perhaps most notably Marshall and Palmer (1948) and Laws and 
Parsons (1943). 

Let us assume that our basic polarisation vectors are chosen as 

$1 /I $i x (60 x k ) ;  l & l =  1 (26) 

$2 11 &ox Li; 122) = 1. (27) 

From previous work Uzunoglu et a1 (1978) the dyadic scattering amplitudes for the 
forward and backward directions for a spheroid have been calculated from 

f(ktIki, 6 0 ,  a)=fi(ktIki, 4 0 ,  a W 1  +f2(ktIki, 6 0 ,  a W 2  

for the cases where k, = *ki. 
We may now define the averaged quantities, 

(f,(k,lki))= 5 P(a)dafj(krlki, 6 0 ,  a )  for j = 1 , 2  and kr  = *ki 
and 

Now using the above in equations (23) and (24) the wavevectors ki corresponding to 
the two possible polarisations may be evaluated as 

3.2. Multiple scattering phenomena 

Equation (28) is a generalised version of the Van de Hulst (1957) scattering equation 
for a stochastic propagation medium. It is valid providing the validity of equation 
(18), the independence approximation, is established. The j = 1 , 2  subscripts in the 
above correspond to the cases of vertical and horizontal polarisation. It will be 
noticed that the generalised equation (28) reduces to the familiar Van de Hulst single 
scattering equation (ki = ko+ (2rp/ko)fi(O)) if the following inequality holds: 

Thus it may be concluded that if the above is true and equation (18) is valid then the 
Van de Hulst approximation can be used in order to describe propagation in a random 
rain-filled medium. 

Although the above inequality is related to the entire properties of the rain-filled 
medium the most important factor is the distance between the raindrop centres. For 
example, for very high rainfall rates, e.g. 150 mm/h, the mean distance between drops 
is b = 10 cm and thus for heavy rainfall frequencies, greater than 10 GHz, kob 2 21. 
From the analysis of the two spherical scatterer problems it can be seen that for 
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kob > 10 the interaction between scatterers is negligible. Thus for 4-100 GHz we can 
safely assume that the first condition (equation (18)) is valid. The satisfaction of this 
condition comes from the ‘sparse distribution’ of the rain-filled medium. The second 
condition (equation (29)) may be checked if the averaged forward and backward 
scattering amplitudes are known. In a previous work (Uzunoglu et a1 1978) we have 
evaluated these quantities at 4 ,6 ,  11, 14,20 and 30 GHz for spheroidal raindrops and 
using these values it will be seen that the second condition is valid up to 30 GHz. For 
higher frequencies we have used Mie’s spherical scattering theory to obtain averaged 
forward and backward scattering amplitudes and again have checked that the second 
condition is valid to 100 GHz. 

It may be expected that for thunderstorm type rain the drop size distribution may 
be peaked at larger drop sizes and thus multiple scattering may be more likely. Let us 
test this case by assuming that the rain consists only of drops of a = 0.25 cm; for an 
incident wave frequency of 100 GHz using Mie theory: 

f(ki(ki ,  0.25) = -0.032 + i0.846 

f(-ki)ki, 0-25) = 0.039 - i0.0561 

and assuming p ( a )  da  = 8(a  - 0.25) da. 

5.58 X 
For a rain rate of 150mm/h using the Marshall-Palmer distribution p = 

cm-3 and ko = 20.94, it will be seen that equation (28) is again valid. 

4. Conclusions 

We have formulated the general scattering problem (including multiple scattering) for 
vector electromagnetic waves from a stochastic propagation medium containing scat- 
terers of random size, orientation, shape and position distributions. Thus multiple 
scattering phenomena may be described in a closed form if an ‘independence approx- 
imation’ is valid. This independence approximation is verified by considering two 
neighbouring spheres scattering. The particular case of propagation of centimetre and 
millimetre waves through a rain-filled medium is investigated in detail. A generalised 
form of the propagation coefficient for such a medium is calculated and shown to 
reduce to the familiar Van de Hulst single scattering formula in its simplest form. 
Conditions for multiple scattering to be negligible and for the Van de Hulst equation 
to be applicable are derived. The latter have been investigated numerically for 
electromagnetic wave propagation in a rain-filled medium for the frequency range 
4-100GHz. It has been shown that multiple scattering in such a medium will be 
negligible over this frequency range. 
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